Директор ТОО "ЯрВладРостСтрой-Холдинг" Круглов А.П.
Тел. +7 (727) 317-37-37.
<
|
Расчет фундаментаПриступая к выбору фундамента, следует определиться с терминами и параметрами, характеризующими сам фундамент и грунт-основание под ним (рис. 1, а). Фундамент - это подземная часть здания, которая предназначена для передачи нагрузки от здания на грунт, залегающий на определенной глубине и являющийся основанием фундамента. Глубина заложения фундамента (Hf) - расстояние от подошвы фундамента до поверхности земли. Подстилающий слой грунта (основание) - слой грунта, на который опирается подошва фундамента. Расчетная глубина промерзания (hi) - положение границы промерзания относительно уровня грунта, принятое в качестве расчетной величины, узаконенной нормативными документами (нормами СНиП).
Глубина промерзания в большей степени определяется климатическими условиями данного региона и соответствует наибольшей величине промерзания влажного глинистого грунта без снегового покрова в период наиболее низких возможных температур. В пределах Европейской и Сибирской части России граница промерзания меняется в широком диапазоне (рис. 2).
Глубина промерзания по городам России и ближнего зарубежья: 70 см - Краснодар, Калининград, Львов. 90 см - Ростов-на-Дону, Астрахань, Киев, Минск, Рига. 100 см - Таллинн, Харьков, Вильнюс. 120 см - Великие Луки, Волгоград, Курск, Псков, Смоленск. 140 см - Воронеж, Тверь, Санкт-Петербург, Москва, Новгород. 150 см - Вологда, Нижний Новгород, Кострома, Пенза, Саратов. 170 см - Ижевск, Казань, Котлас, Самара, Вятка, Ульяновск, Ярославль, Иваново. 180 см - Уфа, Караганда, Актюбинск. 190 см - Екатеринбург, Челябинск, Сыктывкар, Пермь. 210 см - Тобольск, Кустанай, Барнаул. 220 см - Омск, Новосибирск.
Разумеется, реальная глубина промерзания несколько меньше, чем расчетная. Но на то она и расчетная, чтобы избежать возможных разрушений дома при самых неудачных стечениях обстоятельств, предложенных погодой.
Уровень грунтовых вод (hw) - положение зеркала грунтовых вод относительно уровня грунта в условно отрытом котловане (скважине). Сжимаемая толща грунта - деформируемая часть грунта, воспринимающая нагрузку от фундамента. Очевидно, что чем меньше глубина заложения фундамента, тем меньше стоимость строительства. Желание снизить затраты на возведение фундамента ведет к стремлению поднять подошву фундамента к поверхности грунта. Вместе с тем верхние слои грунта не всегда могут удовлетворять требованиям, предъявляемым к основанию сооружения: они имеют недостаточную и неравномерную прочность, подвержены пучинистым явлениям, чем способны вызвать разрушение фундамента и самого строения. Проектирование фундамента связано не только с выбором его конструкции и глубины заложения, но и с определением его геометрических параметров, главным из которых является площадь подошвы фундамента. Именно этот параметр окажет решающее влияние на "поведение" строения в процессе его эксплуатации. Недостаточная площадь опоры приведет к недопустимой просадке сооружения, а неравномерность просадки под ним - к разрушению возведенного строения. Излишне большая площадь подошвы напрямую ведет к увеличению расхода материалов и затрат, расходуемых на возведение фундамента. Определиться с требуемой площадью подошвы фундамента можно через проведение проектировочных расчетов. В строительной практике предусмотрено выполнение расчетов фундамента по двум группам предельных состояний: по несущей способности основания и по допустимым деформациям сооружений. Если первый расчет позволяет определить площадь подошвы фундамента, то второй даст возможность избежать разрушения самого дома от неравномерности в осадке фундамента. Расчет фундамента по несущей способности основания (информация для любознательных застройщиков)Целью расчета оснований по несущей способности является оценка прочности и устойчивости грунта-основания под подошвой фундамента от воздействия эксплуатационных нагрузок. Восприятие нагрузки фундаментом сопровождается его осадкой, которая обусловлена уплотнением грунта и потерей его устойчивости, характеризуемой деформационными сдвигами слоев. Величина осадки (δ) зависит не только от прочностных характеристик грунта, но и от значения прилагаемого усилия (F) (рис. 3), как у пружины, величина сжатия которой зависит от её жесткости и от приложенной силы.
На графике можно выделить типичные участки, характеризующие деформационно-напряженные процессы, проходящие в основании и сопровождающиеся перемещением и уплотнением грунта (рис. 4): ОА - фаза упругих деформаций (рис. 4, а); АБ - фаза уплотнения и местных сдвигов (рис. 4, б); БВ - фаза сдвигов и начало бокового уплотнения (рис. 4, в); ВГ - фаза выпора (рис. 4, г); ГД - фаза преобладающего бокового уплотнения (рис. 4, д).
Наиболее востребованные фазы работы основания, которые используются в условиях строительства - ОА, АБ и начальная часть фазы БВ, где преобладающими являются упругие деформации основания. Каждому типу фундамента соответствует своя фаза деформаций: ОА - для фундамента в виде плит, где давление на грунт невелико; АБ - ленточный мелкозаглубленный фундамент; АБ (конец) и БВ - столбчатый фундамент. Остальные фазы работы основания (ГД) реализуются в основном при создании свайных фундаментов, применяемых в индустриальном строительстве (забивные сваи). При возведении столбчато-ленточного фундамента по технологии ТИСЭ уровень напряжений в основании достаточно высок: задействуются вторая половина фазы АБ, фаза БВ и даже ВГ. Работа основания в широком диапазоне упругих деформаций обеспечивает "мягкое" восприятие нагрузки от веса возведенного строения. Расчет оснований по несущей способности (для фаз ОА, АБ, начало БВ) выполняют через определение требуемой площади подошвы фундамента по следующей формуле: S > γn F/γc Ro , где S - площадь подошвы фундамента (см2); F - расчетная нагрузка на основание (общий вес дома, в том числе фундамент, полезная нагрузка, снеговой покров...) (кг); γn = 1,2 - коэффициент надежности; γc - коэффициент условий работы имеет следующие величины: 1,0 - глина пластичная, сооружение жесткой конструкции (каменные стены); 1,1 - глина пластичная, сооружения нежесткой конструкции (деревянные или каркасные стены) и жесткой конструкции длинные, с соотношением длины к высоте больше 4; 1,2 - глина слабопластичная, пески пылеватые маловлажные, строения нежесткие и жесткие короткие с соотношением длины к высоте меньше 1,5; 1,2 - крупный песок, строения жесткие длинные; 1,3 - пески мелкие, сооружения любой жесткости; 1,4 - крупный песок, сооружения нежесткие и жесткие длинные; R0 - условное расчетное сопротивление грунта основания для фундаментов с глубиной заложения 1,5...2 м (определяется потаблицам 1...5). Таблица 1. Расчетные сопротивления R0 крупнообломочных грунтов
Таблица 2. Расчетные сопротивления R0 песчаных грунтов
Таблица 3. Расчетные сопротивления R0 непросадочных глинистых грунтов
Расчетное сопротивление глинистых грунтов и его влажность существенно зависят от пористости грунта ε (отношение объема пор к объему твердых частиц). Для новичка в строительстве этот показатель оценить в реальных условиях достаточно сложно, т.к. извлеченный грунт в свободном состоянии уже не обладает теми показателями, какие он имел на глубине, находясь под давлением. Автором предложено связать пористость, а следовательно, и несущую способность грунта с глубиной его заложения в зависимости от того, по какую сторону границы промерзания находится подошва фундамента. Любой грунт при увлажнении проседает и уплотняется. В процессе своего существования пучинистый грунт, расположенный ниже глубины промерзания, уплотняется до состояния "дальше некуда". Ничто не меняет это состояние в течение многих и многих десятков и сотен лет. В то же время грунт, находящийся выше глубины промерзания, постоянно насыщается влагой и при сезонном промораживании увеличивается в объеме. Влага, находящаяся в порах, увеличивает объем этих пор на 10%. Таким образом, грунт, находящийся выше границы промерзания, ежегодно "встряхивается", становясь пористым. Глинистый грунт, находящийся ниже глубины промерзания, обладает минимальной (ε = 0,3) пористостью и максимальной прочностью. Просадочные глинистые грунты в сухом состоянии имеют повышенную пористость и вместе с тем обладают высокой механической прочностью, обусловленной сильными структурными связями (табл. 4). Таблица 4. Расчетные сопротивления R0 просадочных глинистых грунтов природного сложения
Таблица 5. Расчетные сопротивления R0 насыпных грунтов
После механического уплотнения просадочных грунтов природного сложения (трамбование) происходит разрушение жесткого каркаса и потеря прочности:
Большему значению расчетного сопротивления насыпных грунтов соответствуют крупные, средние и мелкие пески, шлаки... Меньшему значению - пески пылеватые, супеси, суглинки, глины и золы. Пример расчета фундамента по несущей способности грунта Жилой каменный дом 7x8 м в два этажа имеет одну внутреннюю несущую стену. Вес дома с учетом снегового покрова и полезной нагрузки - около 180 т. Фундамент - заглубленный. Грунт - суглинок увлажненный (несущая способность 3,5 кг/см2) Площадь подошвы фундамента определяется по формуле: S > γn F/γc Ro, где γn=1,2 F= 180000 кг ус=1,0 R0 = 3,5 кг/см2 S>1,2-180000/1,0 3,5 = 61800 см2 = 6,18 м2 При общей длине фундамента - около 35 м ширина подошвы фундамента должна быть не менее 6,18 / 35 = 0,18 м. Влияние сейсмичности на несущую способность грунтаЗадаваясь той или иной величиной расчетного сопротивления грунта, следует учитывать, что при одновременном воздействии статической нагрузки и вибраций прочность грунта снижается. Грунт, как говорят специалисты, приобретает свойства псевдожидкого состояния. Индивидуальные застройщики, решившие возводить сейсмостойкий фундамент своими силами, должны учитывать уменьшение несущей способности грунта при сейсмических вибрациях. Ориентировочно табличную величину расчетного co противления грунта необходимо уменьшить в 1,5 раза, т.е увеличить площадь подошвы фундамента тоже в 1,5 раза. Расчетное сопротивление грунта на разной глубинеВеличины расчетного сопротивления грунтов (R0), приведенные в таблицах 4..8 даны для глубины заложения фундамента 1,5...2 м. Если глубина заложения фундамента меньше чем 1,5 м. то расчетное сопротивление грунта (Rh) определяется по формуле: Rh = 0,005R0(100 +h/3), где h - глубина заложения фундамента в см. Пример 1. Глинистый грунт на глубине 0,5 м при R0=4 кг/см2 будет иметь расчетное сопротивление грунта Rh = 2,33 кг/см2. Если глубина заложения фундамента больше чем 2 м. то расчетное сопротивление грунта (Rh) определяется по формуле: Rh = R0 + kg(h - 200), где h - глубина заложения фундамента в см, g - вес столба грунта, расположенного выше глубины заложения фундамента (кг/см2); к - коэффициент грунта (для песка - 0,25; для супеси и суглинка - 0,20; для глины - 0,15). Пример 2. Глинистый грунт на глубине 3 м при R0=4 кг/см2 будет иметь расчетное сопротивление Rh = 10,3 кг/см2. Удельный вес глины - 1,4 кг/см2, а вес столба глины высотой 300 см - 0,42 кг/см2. Максимальные величины расчетного сопротивления фунтовДля того чтобы глубже понять работу оснований, полезно было бы узнать максимальные величины расчетного сопротивления грунтов, которые встречаются в реальной жизни. Такие экстремальные параметры грунта могут возникнуть только при максимальном его уплотнении, например, под нижним концом забивных свай. Значения расчетного сопротивления сильно уплотненных грунтов R0 (пески гравелистые, крупные, средние, мелкие и пылеватые, пылевато-глинистые грунты) зависят от глубины погружения нижнего конца свай [3]:
Такое внушительное увеличение несущей способности грунта связано с уплотнение грунта не только непосредственно под сваей, но и вокруг неё (рис. 4, д). Эти данные приведены не для того, чтобы их напрямую использовать при расчете фундамента, т.к. такое значительное увеличение расчетного сопротивления грунтов связано с их сильным уплотнением и значительными деформациями основания. Но вместе с тем, это дает застройщику определенную уверенность в том, что созданный им фундамент выдержит вес задуманного сооружения: грунт не подведет. Главное в этом - сделать грамотно все остальное: фундамент и стены.
Расчет фундамента по допустимым деформациям сооруженияЦелью расчета фундамента по этой методике является оценка соответствия действующего и допустимого уровней деформаций сооружения от воздействия эксплуатационных нагрузок. В гибких и жестких конструкциях неравномерность осадки вызывает деформации строений или ведет к изменению их положения(рис. 5), что может вызвать ухудшение условий эксплуатации здания или его оборудования. Кроме этого, при больших деформациях конструкция сооружения может испытывать закритические напряжения, ведущие к его разрушению. Правильно спроектированный фундамент предполагает осадки и деформации строения, но величина их не должна превышать строительные нормы, гарантирующие полноценную эксплуатацию здания. Виды деформаций сооружений.Прогиб и выгиб (рис. 5, а, б) зданий возникает из-за неравномерной осадки основания. Наиболее опасная растянутая зона строений при прогибе находится у фундамента, при выгибе - у кровли. Сдвиг (рис. 5, в) зданий возникает при увеличенной просадке основания с одной из сторон. Наиболее опасная зона строения - стена в средней зоне, где возникает большой сдвиг. Крен (рис. 5, г) здания возникает при относительно большой его высоте (многоэтажный дом, башня, дымовая труба...), при высокой изгибной жесткости строения. Опасен дальнейший рост крена и последующее разрушение здания. Перекос (рис. 5, д) возникает при неравномерных осадках, приходящихся на небольшой участок длинного сооружения. Горизонтальное смещение (рис. 5, е) возникает в фундаментах, в стенах подвалов или в подпорных стенках, загруженных горизонтальными усилиями.
Допускаемая величина осадки и крена сооруженийДопускаемая величина осадки, неравномерности в осадке и крена зависят от типа здания, его силовой схемы и используемых материалов. Величина допустимых деформаций приведена в таблице 6. Таблица 6. Предельные деформации оснований
Относительная неравномерность осадки (σ /L) - максимальное отношение разности в осадке двух участков фундамента к расстоянию между этими участками. По-другому: относительный прогиб (выгиб) характеризуется отношением стрелы прогиба к длине изгибаемого участка. Из таблицы видно, что допустимые неравномерности в осадке дома тем больше, чем менее жесткий дом. Каркасные или деревянные дома допускают относительно большую неравномерность в осадке фундамента. Каменные, более жесткие дома, - нет.
Причины неравномерных осадок:
Основная ошибка строителей заключалась в том, что песчаная подсыпка, играющая роль нижней части опалубки, из-под ленты своевременно не была удалена. По сути стены возводили на ленточном незаглубленном фундаменте, которым являлся ростверк. Перед тем, как возникла трещина, в этом месте стены был брошен шланг, из которого постоянно текла вода, используемая при возведении стен. От переизбытка влаги несущая способность верхних слоев грунта в этом месте снизилась. Тонкая лента проармированного ростверка просела, не треснув. Бетонный массив в нижней части стены, испытывающий растяжение, лопнул, отчего и появилась эта трещина. Правильная последовательность удаления песчаной подсыпки из-под ростверка всего дома и горизонтальное армирование стен позволили решить эту проблему. После нанесения шпаклевки эта трещина больше не проявлялась. Причиной возникновения подобных трещин в стене часто становится разрушенная система ливнеотвода. Толстый слой снега на крыше и массивные сосульки становятся причиной поломки желобов и стояков системы. Если у хозяина руки не доходят до их восстановления, то после сильных дождей земля вокруг дома неравномерно увлажняется, как в предыдущем примере, что вызывает неравномерную осадку незаглубленного или мелкозаглубленного фундамента. В стенах возникают трещины, здание приходит в аварийное состояние, выйти из которого достаточно сложно.
Восстановление вертикальности здания свелось к сознательному ухудшению несущей способности грунта под той частью плиты, которая не просела. Процесс возвращения дома в вертикальное положение занял почти три месяца. Когда дом начал приближаться к вертикальному положению, началось закрепление грунтов основания под всей плитой инъекцией твердеющих растворов под высоким давлением. После восстановительных работ дом оказался ниже исходной проектной отметки на 30 см. Мероприятия по устранению неравномерных осадокУстранение неравномерности осадки фундамента сводится к определенным конструктивным проработкам и к проведению некоторых профилактических мероприятий:
|
Новости
|